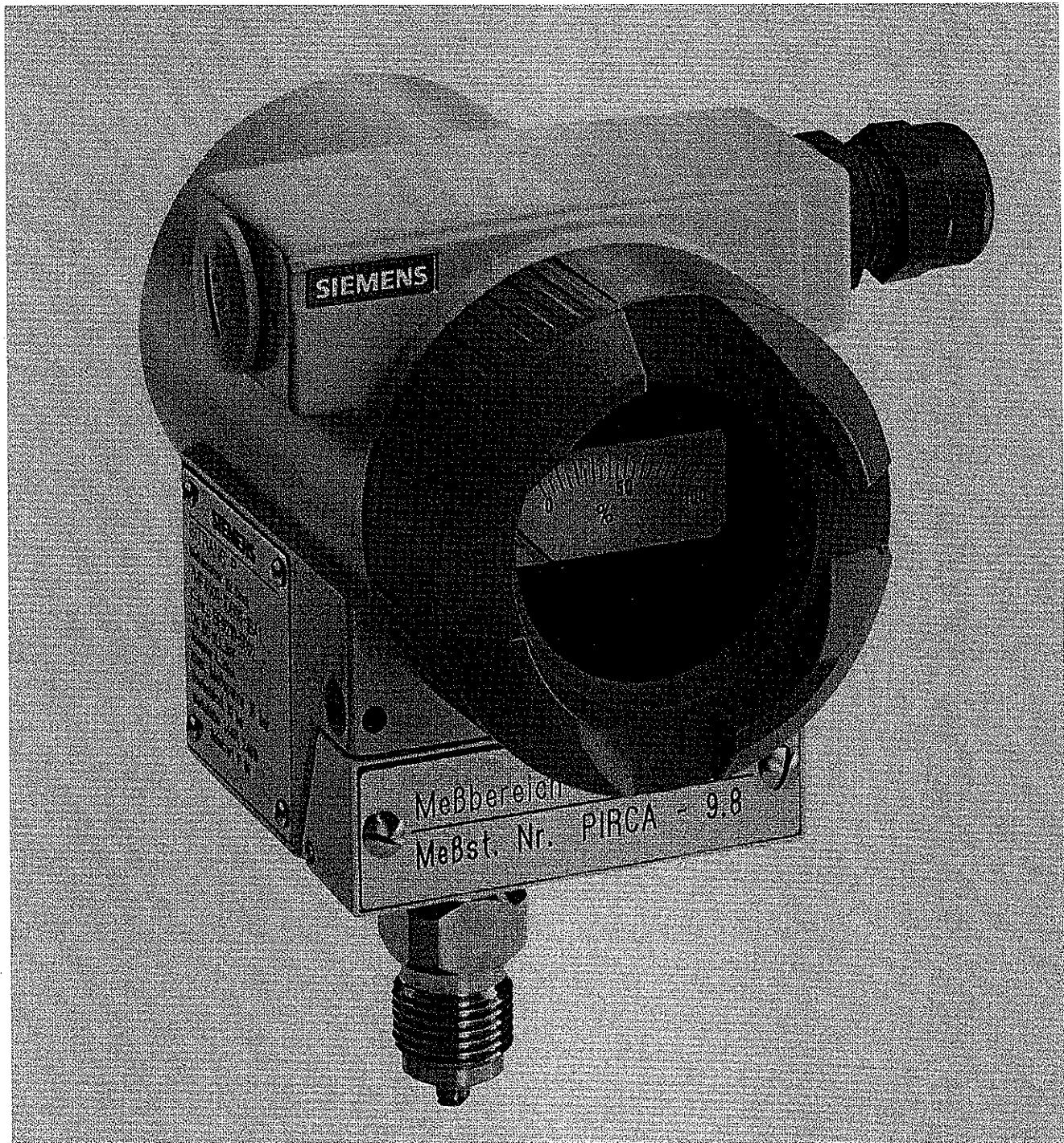


SIEMENS


Archivexemplar

SITRANS® P
pressure transmitter, MK series

7MF4000

Operating Instructions

Order No.: C73000—B5676—C70—1

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights created by the granting of patents or registration of a design are reserved.

Technical data subject to change without notice.

© Siemens AG 1993

SIEMENS

SITRANS P

pressure transmitter, MK series

7MF4000

Operating Instructions

C73000-B5676-C70

Contents

	Page
1 Technical description	6
1.1 Application	6
1.2 How it works	6
1.3 Technical data	7
1.4 Ordering data	9
1.5 Dimensions	10
2 Installation	11
2.1 Where to install	11
2.1.1 Fixing to the isolating valve	11
2.1.2 Fixing with a mounting bracket	12
2.2 Electrical connection	13
2.3 Installing the analog indicator	14
3 Commissioning	15
4 Operation	17
5 Maintenance	19
6 Conformance Certificate	19

Note

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency that may arise during installation, operation or maintenance.

Should further information be desired or should particular problems arise that are not covered sufficiently for the Purchaser's purposes, the matter should be referred to the local Siemens Sales Office.

The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment or relationship. The Sales Contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

WARNING

This equipment should only be installed and operated after qualified personnel have ensured that suitable power supplies are available. These personnel must ensure that the equipment is not subjected to any hazardous voltages during normal operation or when a defect occurs in the system.

This equipment may be used under high pressure and with aggressive media. Improper use of this equipment may therefore result in severe personal injury or extensive damage to property.

The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.

Qualified person

For the purposes of this manual, a qualified person is one who is familiar with the installation, commissioning and operation of this equipment. In addition, the person must be:

- Trained and authorised to operate and service equipment/systems in accordance with established safety practices relating to electrical circuits, high pressures and aggressive media.
- Trained in the proper care and use of protective equipment in accordance with established safety practices.
- Trained in rendering first aid.

1 Technical description

1.1 Application

The SITRANS P transmitter measures the pressure of non-aggressive and aggressive gases, vapours and liquids. Measuring spans of between 0.16 and 160 bar are possible.

The output signal is a 4 to 20 mA DC signal, linearly proportional to the measured pressure.

The transmitter is of "intrinsically safe" design and can be installed within hazardous areas (zone 1). The conformance certificate conforms to the European standard (CENELEC).

Transmitters fitted with various types of chemical seal are available for special applications, e.g. measuring highly viscous media.

1.2 How it works

Pressure is transmitted to a silicone pressure sensor (4, see Figure 1.1) through a diaphragm (2) and a liquid filling (3). The pressure causes the sensor's measuring diaphragm to distort. The resistance of four doped piezo-resistors in a bridge circuit in the measuring diaphragm changes. This change in resistance generates an output voltage in the bridge circuit that is proportional to the measured pressure. This voltage is converted into a periodic signal by an amplifier (11) in a voltage/frequency converter (12). A microcontroller (13) evaluates the signal, corrects it with respect to linearity and temperature before passing it on to a digital/analogue converter, which converts it into a 4 – 20 mA output signal.

Data specific to the measuring cell are stored in non-volatile memory (EEPROM).

Transmitters with a measuring span of \leq 63 bar measure pressure against atmosphere, those with spans of 160 bar against vacuum.

Start of scale and full scale are set using three pushbuttons located on the outside of the instrument.

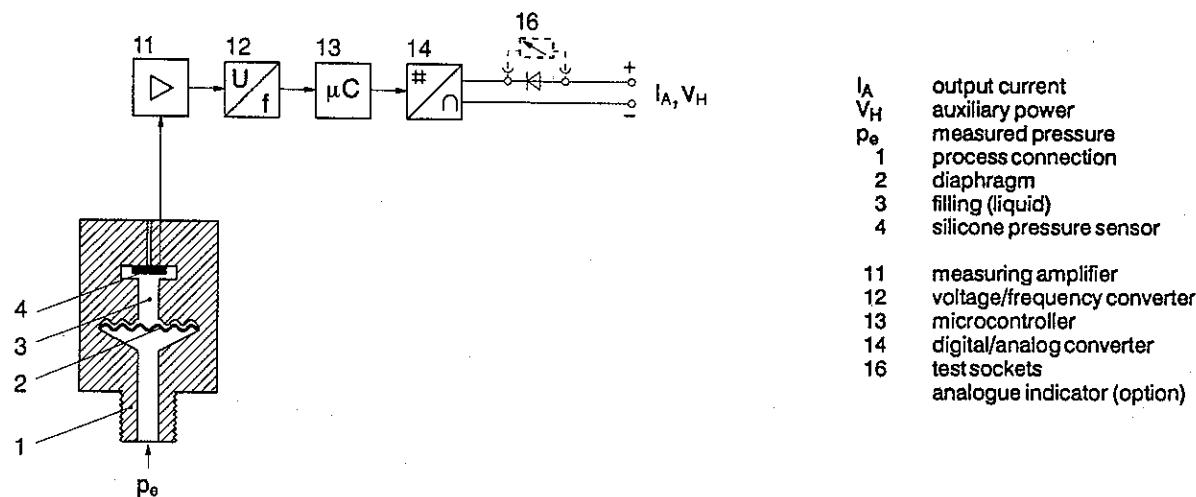


Figure 1.1 SITRANS P pressure transmitter, function diagram

1.3 Technical data

Functional data

Measuring spans and overrange limits

Variable measuring spans							Overrange limits	
							Lower	Upper
0.16	to	1 bar	/	16	to	100	kPa	-1 bar
0.63	to	4 bar	/	63	to	400	kPa	-1 bar
2.5	to	16 bar	/	0.25	to	1.6	MPa	-1 bar
10	to	63 bar	/	1	to	6.3	MPa	-1 bar
25	to	160 bar	/	2.5	to	16	MPa	-1 bar

Lower measuring limit 30 mbar (absolute) at ambient temperature below 60 °C

Upper measuring limit 100% of max. measuring span

Start of scale anywhere between the measuring limits

Auxiliary power terminal voltage on transmitter 11 to 45 V DC,
11 to 30 V DC in intrinsically – safe mode

Output signal lower limit 4 to 20 mA
3.84 mA
upper limit 22 mA
in error situation 3.6 mA or 22.8 mA
ripple $I_{ss} \leq 0.5\%$ of maximum output current

Load $R \leq \frac{V_H - 11 V}{0.02 A}$ in Ω ,
V_H: auxiliary power in V

Ambient temperature -40 °C to +85 °C,
observe temperature classes in hazardous areas

Temperature of medium -40 °C to +100 °C

Storage temperature -50 °C to +85 °C

Condensation permitted

Installation process connection pointing vertically down

Response characteristic

with rising characteristic, start of scale 0 bar.
All figures relate to the output span.

Measurement error when calibrating
fixed point
(incl. hysteresis and repeatability)

$\leq 0.25 \%$

Time constant T_{63}

approx. 0.2 s

Long-term drift

$\leq 0.2 \%$ every 6 months at max. measuring span

Effect of ambient temperature
on start of scale

$\leq 0.15 \%$ /10 K at max. measuring span

on measuring span

$\leq 0.15 \%$ /10 K

Effect of auxiliary power

$\leq 0.005 \%$ for each 1 V change in voltage

Electro-magnetic compatibility

conforms to IEC 801/NAMUR recommendations

Effect of installation from vertical

$\leq 0.05 \text{ mbar} / 10^\circ \text{ of angle}$

Instrument design

Electrical connection

screw-type terminals or Han 7D connector
Cable inlet in the case of screw-type terminals via
Pg 13.5 compression gland or
M20 x 1.5 female thread

Degree of protection
to EN 60529

IP65

Process connection

connecting shank G 1/2A conforming to DIN 16288 or
1/2 – 14 NPT female thread

Material of components that come
into contact with the medium

connecting shank
diaphragm

stainless steel, material no. 1.4401
stainless steel, material no. 1.4404 or
Hastelloy C276, material no. 2.4819

silicone oil

Measuring cell filling

die-cast aluminium with low copper content GD-AlSi 12,
polyester based lacquer,
stainless steel rating plate

Mounting bracket (optional)

galvanised, yellow-passivated steel, or
stainless steel

Analog indicator (optional)

linear scale 0 to 100% or to customer's specification

Weight

approx. 1.5 kg (without options)

Explosion protection

to DIN EN 50014 and DIN EN 50020 (CENELEC)

Type of protection

"intrinsically safe i"
EEx ia IIC T4 or T5 or T6

Conformance certificate

PTB Ex-92.C.2146

Max. ambient temperature

+85 °C (temperature class T4)
+75 °C (temperature class T5)
+60 °C (temperature class T6)

Connection

to certified intrinsically safe circuits with the following
maximum values:

$V_o = 30 \text{ V}$, $I_K = 100 \text{ mA}$, $P = 750 \text{ mW}$

Effective internal inductance

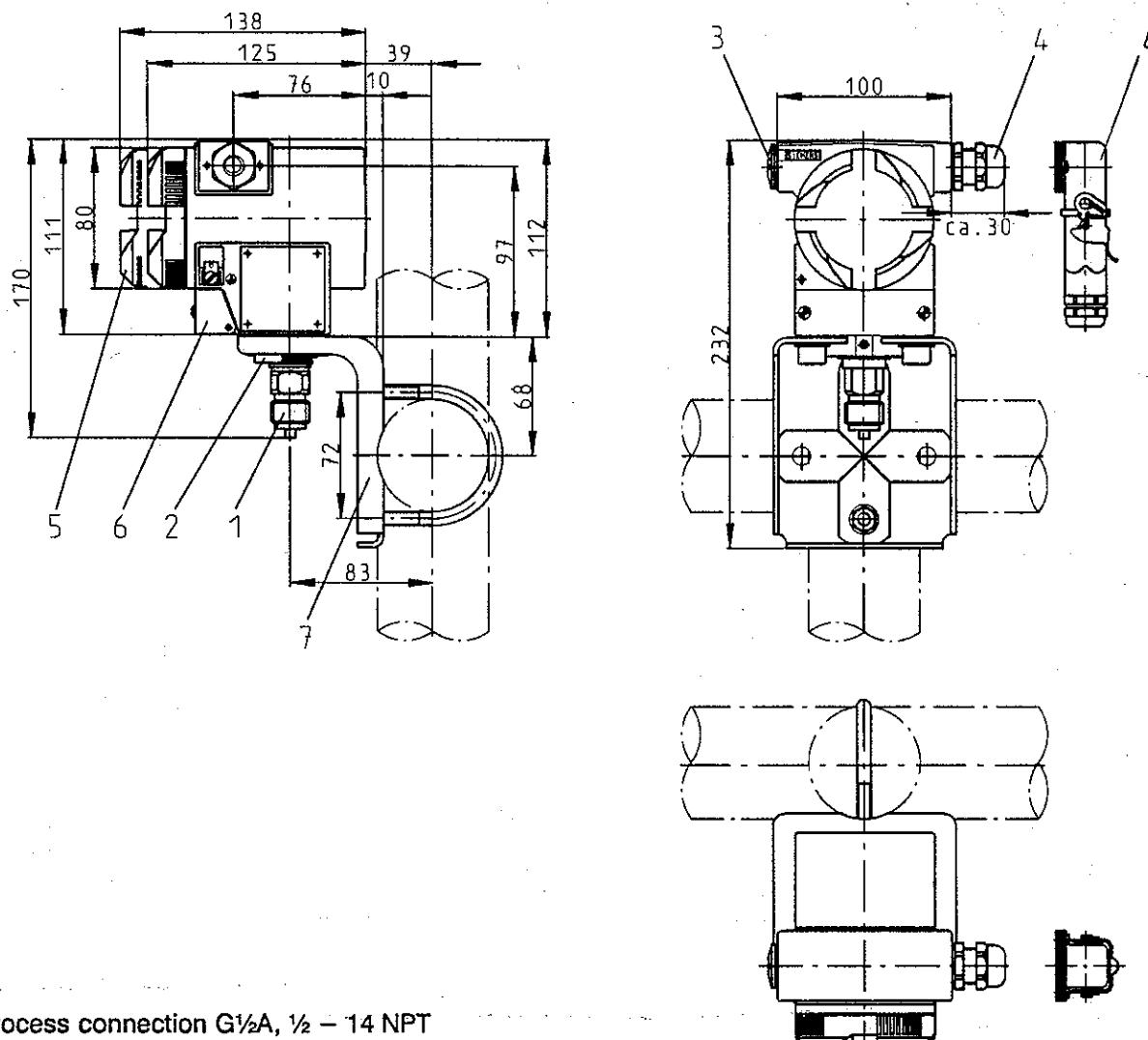
$L \leq 0.6 \text{ mH}$

Effective internal capacitance

$C_i \leq 6 \text{ nF}$

1.4 Ordering data

Description	Order no.
SITRANS P pressure transmitter 2-wire system	7MF4000 - 1□□□□ - 1□□□
<u>Measuring span</u>	
0.16 bar to 1 bar	B
0.63 bar to 4 bar	C
2.5 bar to 16 bar	D
10 bar to 63 bar	E
25 bar to 160 bar	F
<u>Material of components that come into contact with the medium</u>	
Stainless steel	Connecting shank
Edelstahl	Stainless steel
Hastelloy	Stainless steel
Version with chemical seal	Y
<u>Process connection</u>	
Connecting shank G 1/2 A	00
Female thread 1/2-14 NPT	10
<u>Explosion protection</u>	
none	A
"intrinsically safe"	B
<u>Electrical connection/cable inlets</u>	
Pg 13.5 compression gland	A
Female thread M20 x 1.5	B
Han 7D connector	D
<u>Indicator</u>	
none	1
with analog indicator	
scale 0 to 100%, linear	3
scale as specified	
(Y20 code required)	5


Other versions
Add "-Z" suffix and code to order no.

Description	Code
Transmitter with mounting bracket	
of steel	A01
stainless steel	A02
Language for rating plate	
(German by default)	
English	B11
French	B12
Spanish	B13
Italian	B14
Manufacturer's test certificate M as specified	
in DIN 55350, Part 18 and ISO 8402	C11

Additional information
Add "-Z" suffix and code to order no. and specify in writing

Description	Code
Required measuring range, specify in writing, max. 26 characters: Y01: ... to ... mbar, bar, kPa, MPa, ...	Y01
Measuring point id. Number of measuring point, specify in writing, max. 16 characters: Y11:.....	Y11
Description of measuring point, specify in writing, max. 28 characters: Y12:.....	Y12
Customer specified scale for analog indicator, specify in writing, max. 26 characters: Y20: ... to ... mbar, bar, kPa, MPa, ...	Y20

1.5 Dimensions

- 1 Process connection G $\frac{1}{2}$ A, $\frac{1}{2}$ – 14 NPT
- 2 M8 threads for accessories
- 3 Blanking plug (electrical connection possible)
- 4 Electrical connection:
Pg 13.5 compression gland or
Female thread M20 x 1.5 or
Han 7D connector
- 5 Indicator (optional)
- 6 Protective cover for keyboard
- 7 Mounting bracket (optional), with U-bolt for fixing
to vertical or horizontal pipe
(50 to 60 mm in diameter)

Figure 1.2 SITRANS P pressure transmitter, dimensions

2 Installation

2.1 Where to install

The transmitter can be installed above or below the pressure tapping point. When measuring gases, we recommend the transmitter be installed above the pressure tapping point and the pressure pipe be laid so it runs down to the pressure tap. This will permit any condensation in the pipe to drain off and not affect the measurement. When measuring liquids, the transmitter should be installed below the pressure tapping point and the pipe laid so it rises up to the pressure tap, thus enabling any gas in the pipe to be dispersed.

The point of installation should be easily accessible, preferably close to the measuring point and free from vibration. The permitted ambient temperature limits must not be violated. Protect the transmitter from direct heat sources. Before installing the transmitter, compare the process data against the data on the rating plate. Keep the transmitter closed during the installation process.

The transmitter can be fixed to the isolating valve or secured with the mounting plate, depending on the type of process connection.

Note: The measuring cell must not be rotated within the electronics housing!

2.1.1 Fixing to the isolating valve

In the installation example in Figure 2.1, the SITRANS P transmitter is screwed onto a DIN 16720 model B isolating valve. The isolating valve is fixed to a wall or pipe by a clamp.

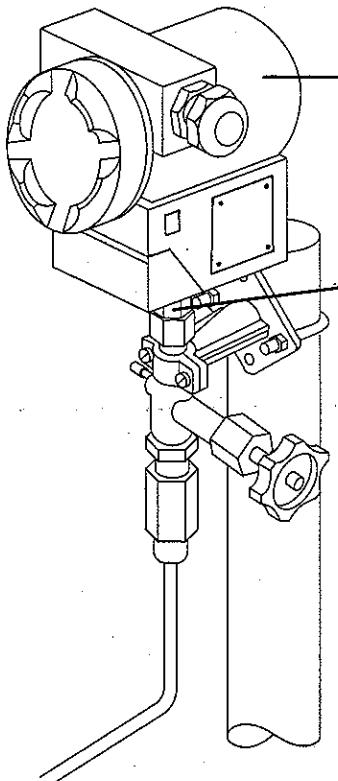


Figure 2.1

Fixing SITRANS P to a isolating valve using G1 1/2 A connecting shank

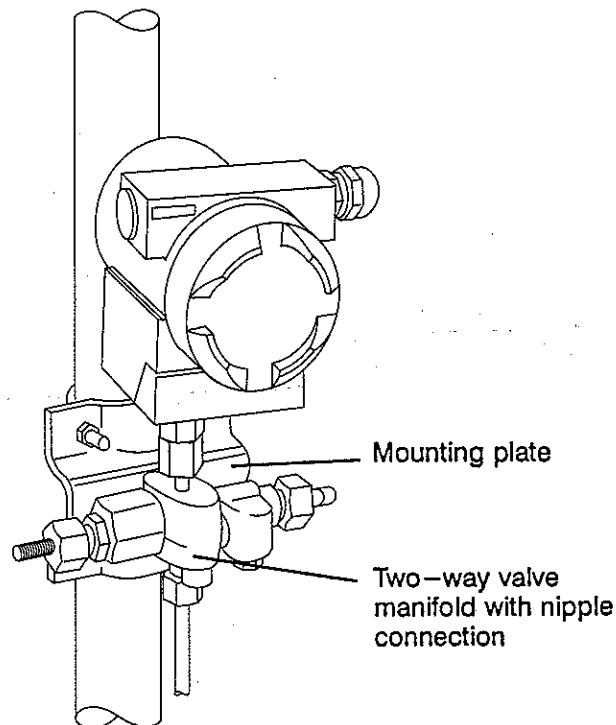


Figure 2.2

Figure 2.2 shows SITRANS P screwed to a two-way valve manifold with a welded nipple connection. The two-way valve manifold is fastened using a mounting plate.

2.1.2 Fixing with a mounting bracket

The mounting bracket is fixed to either

- a wall or mounting frame using 2 screws,
or
- to a vertical or horizontal mounting pipe (50 to 60 mm in diameter) using a U-bolt.

The transmitter is fastened to the mounting bracket using the two enclosed M8 x 20 screws.

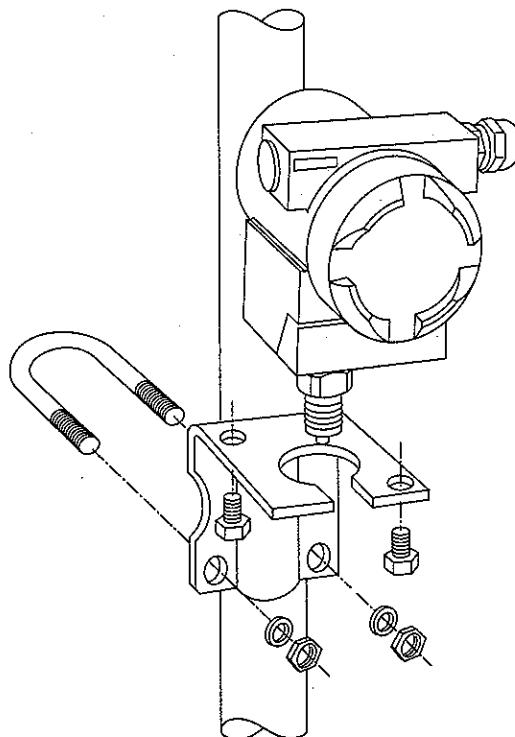


Figure 2.3 Fixing the SITRANS P transmitter using a mounting bracket

2.2 Electrical connection

WARNING

Observe the relevant regulations during the electrical installation; in hazardous areas, pay particular attention to:

- ☒ the regulations governing electrical systems in hazardous areas (Ex e V)
- ☒ the specifications regarding the installation of electrical systems in hazardous areas (VDE 0165) and
- ☒ the conformance certificate

Check that the auxiliary power supply matches that specified on the rating plate.

The transmitter should be powered from a SELV (safety extra-low voltage) source. If other power sources are to be used, we recommend that the transmitter housing be earthed. The earth terminal in the terminal housing is galvanically connected to the external earth terminal.

The following general guidelines apply when laying terminal/signal cables:

- lay the signal cable separately from cables carrying voltages > 60 V
- use twisted-pair cables
- do not lay the cables close to large electrical systems, or use screened cable

Connection to screw-type terminals

- remove housing cover
- remove analog indicator (if fitted)
- feed cable in through cable gland
- connect to "+" and "-" terminals, observing polarity!
- replace analogue indicator (if applicable)
- replace transmitter cover

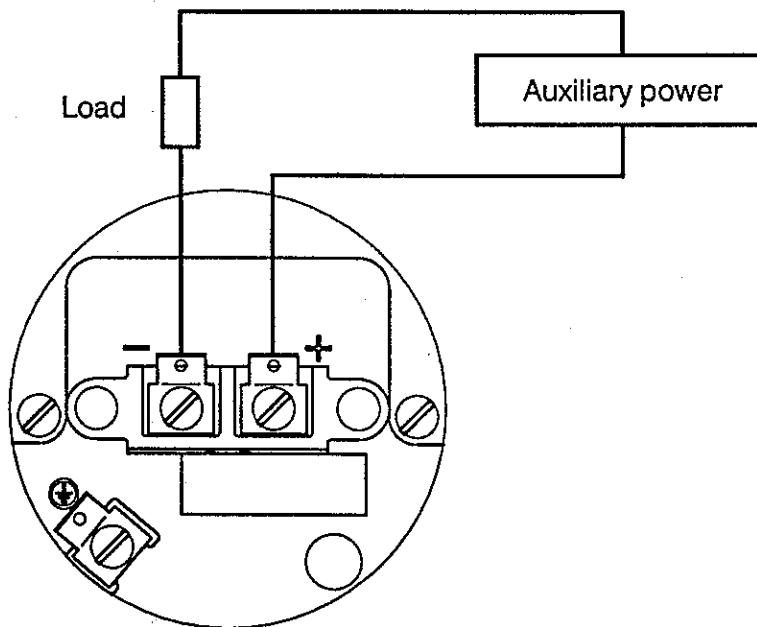


Figure 2.4 Electrical connection schematic

Connection using a plug connector

The contacts for the connector are supplied in a bag with the instrument.

- slide sleeve and gland on to the cable
- remove about 8 mm of insulation from the end of the cable
- crimp or solder the contacts to the cable ends
- assemble connector

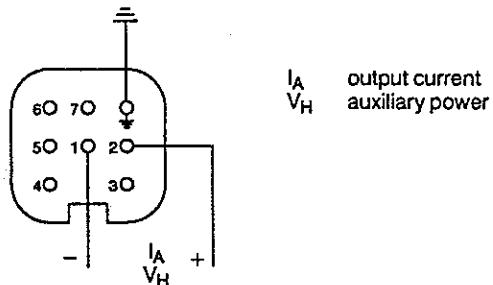


Figure 2.5 Connection using plug connector

2.3 Installing the analogue indicator

- Remove transmitter cover
- Plug analogue indicator into the test sockets
- Replace cover and viewing window

3 Commissioning

The process data must correspond to that on the rating plate. The transmitter functions as soon as the power is turned on.

WARNING

Severe personal injury or damage to property may result if the valves are improperly or incorrectly operated.

Measuring gases

The isolating valves should be operated in the following sequence:

Initial setting: all valves closed

- Open isolating valve (2B),
- Apply a pressure corresponding to the start of scale to the transmitter (1) using the test connection of isolating valve (2),
- Check the start of scale and correct if necessary (see section 4),
- Close isolating valve (2B),
- Open isolating valve (4) at pressure tapping point,
- Open isolating valve (2A).

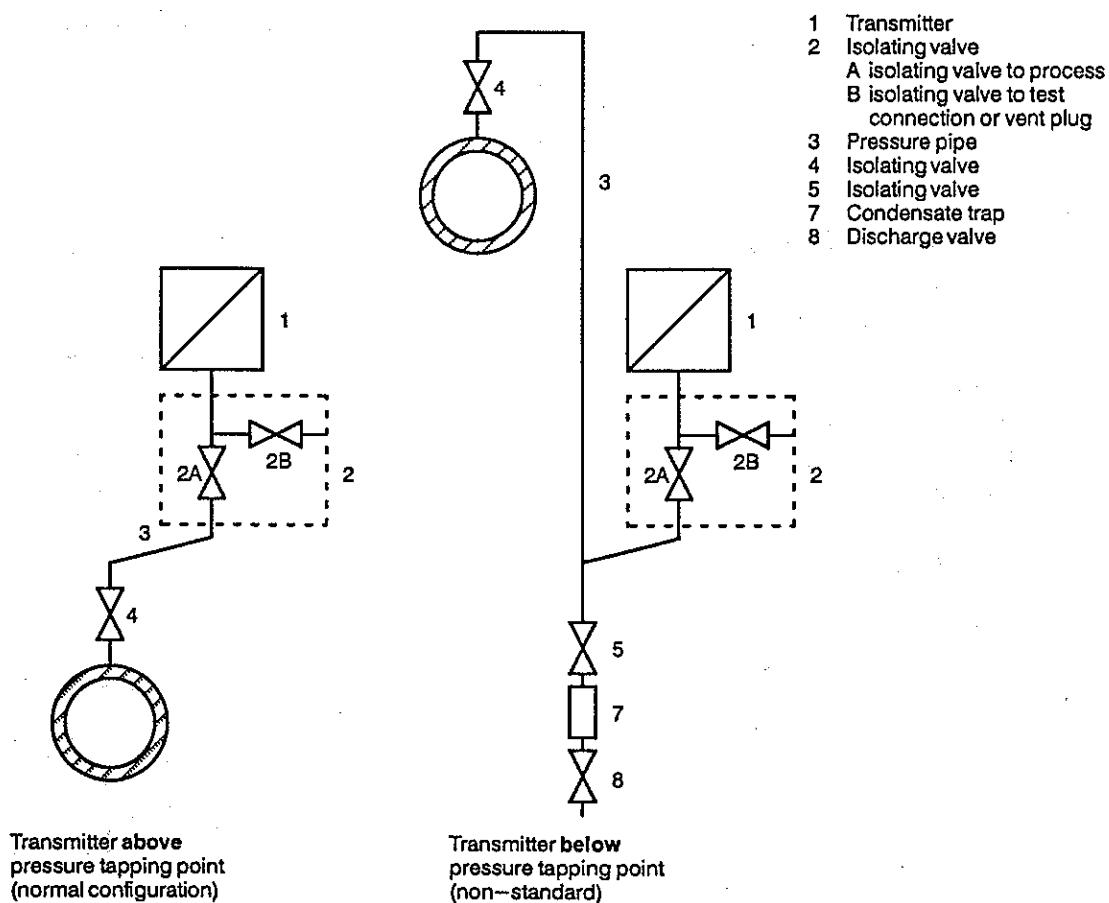


Figure 3.1 Measuring gases

Measuring liquids

The isolating valves should be operated in the following sequence:

Initial setting: all valves closed

- Open isolating valve (2B),
- Apply a pressure corresponding to the start of scale to the transmitter (1) using the test connection of isolating valve (2),
- Check the start of scale and correct if necessary (see section 4),
- Close isolating valve (2B),
- Open isolating valve (4) at pressure tapping point,
- Open isolating valve (2A).

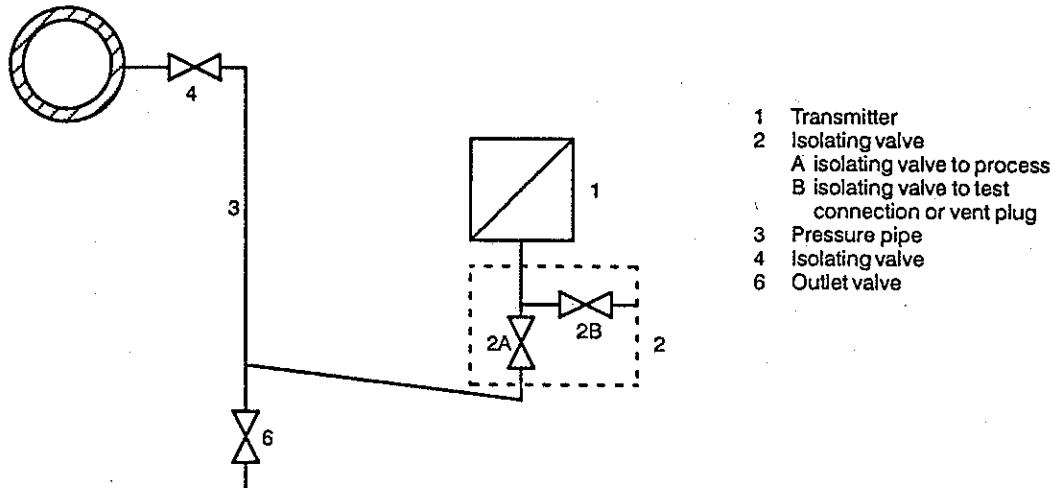


Figure 3.2 Measuring liquids

Measuring steam

The isolating valves should be operated in the following sequence:

Initial setting: all valves closed

- Open isolating valve (2B),
- Apply a pressure corresponding to the start of scale to the transmitter (1) using the test connection of isolating valve (2),
- Check the start of scale and correct if necessary (see section 4),
- Close isolating valve (2B),
- Open isolating valve (4) at pressure tapping point,
- Open isolating valve (2A).

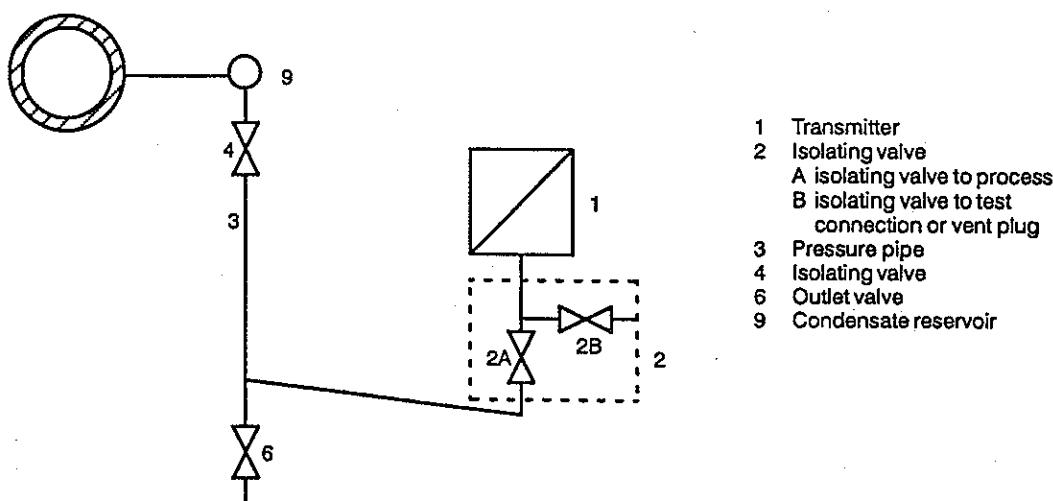


Figure 3.3 Measuring steam

4 Operation

The transmitter is operated by three pushbuttons, located on the outside of the instrument, with which the start of scale and full scale are set. The pushbuttons can be accessed by undoing the two screws holding the protective cover in place, which can then be moved out of the way.

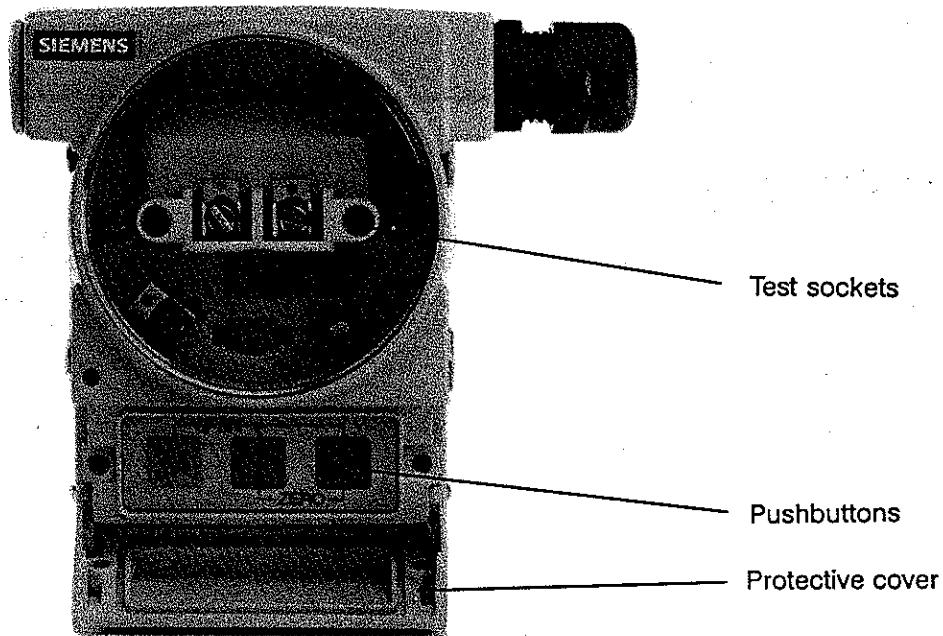


Figure 4.1 SITRANS P transmitter controls and displays

Set start of scale (4 mA) and full scale (20 mA)

Assuming the pushbuttons are pressed as described below, the transmitter sets the start of scale to 4 mA and the full scale to 20 mA. An ammeter is not required.

Start of scale

- Apply a pressure corresponding to the start of scale to the transmitter. When the start of scale is 0 bar, ensure the measuring chamber is equal to atmospheric pressure.
- Press **↓** and **↑** keys together for about 2 s

Full scale

- Apply a pressure corresponding to the full scale to the transmitter. (Observe the measuring limits)
- Press all three keys, making sure you press the **M** key first and release it last, otherwise the start of scale may be incorrect; set start of scale and full scale again if necessary.

Calibrate start of scale and full scale

If the output current is going to be variable rather than fixed:

- Connect a DC meter to the output circuit or the test sockets
 - ☞ Connection to test sockets
 - Clean the transmitter before opening it to prevent the ingress of dirt
 - Remove transmitter cover
 - Remove the analogue indicator (if fitted)

WARNING

If the transmitter is installed in a Zone 1 hazardous area, use a passive DC meter only.

 Start of scale

- Apply a pressure corresponding to the start of scale to the transmitter. When the start of scale is 0 bar, ensure the measuring chamber is equal to atmospheric pressure.
- Set the output current for start of scale using the **↓** and **↑** keys.

 Full scale

- Apply a pressure corresponding to the full scale to the transmitter.
- Set the output current for full scale using the **M** key and the **↓** key or the **M** key and the **↑** key. Always press the **M** key first and release it last, otherwise the start of scale may be incorrect; set start of scale and full scale again if necessary and recalibrate.

Note: The start of scale and measuring span are non-interactive.
(Measuring span = full scale – start of scale)

On completion of calibration

- replace the analogue indicator in the test sockets (if applicable)
- screw cover back on (if applicable)
- replace protective cover and tighten both screws

5 Maintenance

The transmitter requires no maintenance.

Check the transmitter's start of scale value occasionally (see section 4).

The output current is displayed on the LCD. If an error has occurred, the character "E" is displayed in the first position.

6 Conformance Certificate

Physikalisch-Technische Bundesanstalt

KONFORMITÄTSBESCHEINIGUNG
PTB Nr. Ex-92.C.2146

(1) **Neßumformer SITRANS P Typ 7MF4***-x4+xx-1B+***

(2)

(3) Diese Bescheinigung gilt für den Neßumformer SITRANS P Typ 7MF4***-x4+xx-1B+*

(4) der Firma **SICK AG** 7200 Karlsruhe

(5) Die Bauart dieses elektrischen Betriebsmittels sowie die verschiedenen zulässigen Ausführungen sind in der Anlage zu dieser Konformitätsbescheinigung festgelegt.

(6) Die Physikalisch-Technische Bundesanstalt beschreibt als Prüfstelle nach Artikel 14 der Richtlinie des Rates über die Europäischen Gemeinschaften vom 18. Dezember 1975 (76/117/EWG) die Übereinstimmung dieses elektrischen Betriebsmittels mit den harmonisierten Europäischen Normen

Elektrische Betriebsmittel für explosive Gefahrenräume

EN 50014:1977 + A1:1985 (VDE 0170/0171 Teil 1) Allgemeine Bestimmungen
EN 50020:1977 + A1:1985 (VDE 0170/0171 Teil 2) Eigensicherheit

nachdem die Betriebsmittel mit Erfolg einer Bauartprüfung unterzogen wurde. Die Ergebnisse dieser Bauartprüfung sind in einem Prüfbericht festgelegt.

(7) Das Betriebsmittel ist mit dem folgenden Kennzeichen zu versehen:

Ex ia IIC T6

(8) Der Hersteller ist dafür verantwortlich, daß jedes derart gekennzeichnete Betriebsmittel in seiner Bauart mit den in der Anlage zu dieser Konformitätsbescheinigung festgelegten Grenzen übereinstimmt und daß die vorgeschriebenen Stücklisten eingehalten werden.

(9) Das elektrische Betriebsmittel darf mit dem hier abgedruckten gemeinschaftlichen Unterscheidungszeichen gemäß Anhang II der Richtlinie des Rates vom 8. Februar 1979 (79/196/EWG) gekennzeichnet werden.

Im Auftrag

Dr.-Ing. Schebsdat
Regierungsdirektor

Braunschweig, 12.01.1993

Prüfbescheinigungen ohne Unterschrift und ohne Dienstsiegel haben keine Gültigkeit.
Die Bescheinigungen dürfen nur innerhalb Weltzeitverband verwendet werden.
Ausdruck oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt, Bundesallee 100, Postfach 33 45, D-3300 Braunschweig.

Physikalisch-Technische Bundesanstalt

A N L A G E
zur Konformitätsbescheinigung PTB Nr. Ex-92.C.2146

Der Neßumformer SITRANS P Typ 7MF4***-x4+xx-1B+* dient in seinen verschiedenen Ausführungen zur Messung von Druck, Absolutdruck, Differenzdruck, Durchfluß oder Füllstand von Flüssigkeiten, Gasen oder Dämpfen.

Die höchstzulässige Umgebungstemperatur in Abhängigkeit von der Temperaturklasse ist der folgenden Tabelle zu entnehmen:

Temperaturklasse	Umgebungstemperatur
T5	60°C
T5	75°C
T4	85°C

Elektrische Daten

Hilfsenergie-/Ausgangssignalstromkreis (Anschluß : +, -)

in Zündschutzart Eigensicherheit Ex ia IIC nur zum Anschluß an beschleunigte eigensichere Stromkreise mit folgenden Höchstwerten: $U_0 = 30$ V $I_k = 100$ mA $P = 750$ mW

wirksame innere Induktivität $L_i = 0,6$ mH
wirksame innere Kapazität $C_i = 6$ nF

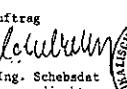
Kontrollenzeigerstromkreis (Anschluß: Testbuchsen)

in Zündschutzart Eigensicherheit Ex ia IIC nur zum Anschluß an erdfreie Anzeiger oder Prüfgeräte ohne eigene Stromversorgung (Batterie, Netz) und ohne Fremdstromkreise
Hochstwerte: $U_0 = 30$ V $I_k = 100$ mA

höchstzulässige äußere Induktivität $L_A = 0,6$ mH
höchstzulässige äußere Kapazität $C_A = 7$ nF

Prüfungsunterlagen

unterschrieben am:


1. Beschreibung (15 Blatt) 07.09.1992

2. Zeichnung Nr. C73451-A400-X100-**-26

Blatt 0, 1, 4, 6 12.10.1992

Blatt 2, 3, 5, 7-15 07.09.1992

Im Auftrag

Dr.-Ing. Schebsdat
Regierungsdirektor

Braunschweig, 12.01.1993

Blatt 1/1

Siemens AG
Bereich Automatisierungstechnik
Geschäftsgebiet
Meß- und Prüftechnik, Prozeßautomatisierung
D-76181 Karlsruhe

Siemens Aktiengesellschaft

© Siemens AG 1993 All rights reserved

Order No. C73000-B5676-C70-1
Available from: MWB
Printed in the Federal Republic of Germany
AG 0893 0.3 OR 20 En

Progress
in Automation.
Siemens